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In this paper, an attention controlled multi-core architecture is proposed for energy

efficient object recognition. The proposed architecture employs two IP layers having

different roles for energy efficient recognition processing: the attention/control IPs

compute regions-of-interest (ROIs) of the entire image and control the multiple

processing cores to perform local object recognition processing on selected area. To this

end, a task manager is proposed to perform dynamic scheduling of various ROI tasks

from the attention IP to multiple cores in a unit of small-sized grid-tile. Thanks to a

number of grid-tile threads generated by the task manager, the utilization of the

multiple cores amounts to 92% on average. As a result, the proposed architecture

achieves 2.1� energy reduction in multi-core recognition system by indicating

processing cores to focus on critical area of the image with a 0.87 mJ attention

processing. Finally, the proposed architecture is implemented in 0.13 mm CMOS

technology and the fabricated chip verifies 3.2� lower energy dissipation per frame

than the state-of-the-art object recognition processor.

& 2010 Published by Elsevier B.V.
1. Introduction

Object recognition is the process of identifying objects
out of an input image by matching their features with
trained database of target objects. It has been a core
technology for computer vision applications such as
autonomous vehicles, autonomous mobile robots, and
surveillance systems [1–5], and also can be applied to
video applications such as JPEG/MPEG encoding and
decoding [6]. Fig. 1 shows a simplified process of the
scale invariant feature transform (SIFT) [7], a commonly
used object recognition algorithm. First, various scale
spaces of an input image are generated by Gaussian
filtering operations with different coefficient values, and
difference-of-Gaussian (DoG) images are generated by
subtracting two neighboring image spaces. Then, object
Elsevier B.V.
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key-points are localized by searching local maxima/
minima points among three neighboring DoG images.
Each key-point is converted to a descriptor vector to
describe its magnitude and orientation characteristics.
After this SIFT key-point description, generated vectors
are matched with the object database for the final
recognition.

Since each stage of object recognition requires huge
amount of computations, it is difficult to achieve a real-
time operation with a conventional single general-
purpose processor (GPP). Zhang et al. [8] reveals a
2.33 GHz Intel Core2 processor can only obtain 2 frame/s
performance when it runs the SIFT algorithm for VGA
(640�480) sized input video, and they show that
real-time operation over 30 frame/s for the SIFT can be
achieved by parallelizing it on a multi-core system
containing two 2.33 GHz Intel Core2 Quad processors
(8 cores). However, a multi-core system using GPPs is a
costly solution in terms of silicon area, power, and energy
consumption. For example, the power consumption of the
olled multi-core architecture for energy efficient object
16/j.image.2010.03.003
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Fig. 1. SIFT based object recognition process.
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multi-core system of [8] is more than 100 W, which is
usually not appropriate for mobile applications.

To achieve real-time object recognition with consider-
ably lower power, several embedded multi-core proces-
sors have been developed in recent years [1–5]. Abbo et al.
[1] and Kyo et al. [2] present massively parallel single
instruction multiple data (SIMD) architectures that max-
imize data-level parallelism in pre-processing stages of
object recognition. Kim et al. [3] present a multi-core
architecture including 10 processing units and 8 channel
memories to exploit task-level parallelism over data-level
parallelism in object recognition. Kim et al. [4] propose a
special hardware IP named visual attention engine (VAE)
[9] in a multi-core architecture with 8 SIMD processing
cores. This processor proves that the concept of visual
attention [10] can reduce the computational costs of
object recognition in real system implementation. The
proposed VAE extracts the saliency map out of the input
image and filters the key-points extracted by the proces-
sing cores based on the map. By reducing the number of
valid key-points, workloads of key-point based task such
as descriptor generation and further database matching
can be reduced. However, the VAE plays a role in just a
pre-processing filter in the architecture because it does
not have any controlling ability over multiple cores except
reducing the number of key-points. The pixel based tasks
such as Gaussian scale space generation, DoG generation,
and local maxima/minima search do not benefit from the
VAE, and are executed by multiple cores with a conven-
tional column-wise processing for the whole area of
image.

In this paper, we propose an attention controlled
multi-core architecture for energy efficient object recog-
nition. This architecture introduces two different IP layers
having different roles for more energy efficient proces-
sing: the attention/control IPs that estimate regions-of-
interest (ROIs) as a global workload estimator for the
entire image and control the operations of multiple
processing cores, and multiple processing cores that
perform local object recognition processing focusing on
those areas. Based on the ROI results, the introduced task
manager dynamically controls the tasks and threads of
multiple cores with a fine-grained grid-tile based proces-
Please cite this article as: J.-Y. Kim, et al., An attention contr
recognition, Signal Process. Image Commun. (2010), doi:10.10
sing model. It also manages the overall processing speed
and resource allocation of multiple cores by differentiat-
ing task scheduling methods. The rest of this paper is
organized as follows. In Section 2, the visual perception,
an enhanced attention processing that extracts the
ROIs out of an input image, is introduced and the overall
object recognition algorithm based on it will be briefly
covered. In Section 3, the attention controlled multi-core
architecture is proposed for energy efficient object
recognition. Its grid-tile based processing model, applica-
tion mapping, workload distribution, and scheduling
method will be explained. The overall energy saving
effect of the proposed architecture will be evaluated.
Section 4 describes the implementation of visual percep-
tion in energy efficient way with cellular neural networks
and neuro-fuzzy classifier. Section 5 shows the silicon
realization of the proposed architecture. After that, this
paper will be summarized in Section 6.
2. Visual perception based object recognition algorithm

Fig. 2 shows the flow diagram of the proposed visual
perception based object recognition algorithm. It com-
bines two different algorithms, visual perception and
general object feature description algorithm described in
Section 1. The visual perception, an enhanced attention
processing, extracts the regions-of-interest (ROIs) out of
the input image to provide more complete attention
information than previous one [4]. Firstly, the visual
perception adopts Itti’s visual attention model [10] to
extract several bottom-up features such as intensity,
color, orientation, and motion, and promote them to a
single unified map named saliency map. Then, it selects
the most salient parts of the image as the seed points and
performs region growing from seed points via repeated
homogeneity classifications to determine the ROIs of
objects [11]. For the feature description part, we employ
the SIFT algorithm [7]. Consequently, object recognition
processing can be selectively performed in this algorithm
with the visual perception stage that extracts the ROIs of
input image prior to detailed object feature description
stage.
olled multi-core architecture for energy efficient object
16/j.image.2010.03.003
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Fig. 2. Visual perception based object recognition.
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Fig. 3. Proposed attention controlled multi-core architecture.
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3. Attention controlled multi-core architecture

3.1. Overall architecture

Fig. 3 shows the proposed attention controlled multi-
core architecture. Unlike the conventional architectures
that increase parallelism simply by exploiting more
processing cores, this architecture employs two different
IP layers – attention/control IP layer and parallel
processing layer – having different roles for energy
efficient recognition processing. The attention/control IP
layer estimates global workload of overall input image,
i.e., regions-of-interest, and controls multiple cores in
parallel processing layer to run application program
focusing on those areas, which results in more energy
efficient processing. The attention/control IP layer
Please cite this article as: J.-Y. Kim, et al., An attention contr
recognition, Signal Process. Image Commun. (2010), doi:10.10
includes a visual perception engine (VPE) and task
manager (TM), and the parallel processing layer consists
of N multiple cores. We call each of them an SIMD
processor unit (SPU). The SPU core is a fully
programmable device and each of N SPU cores can run
an independent program.

The VPE is a special IP to extract attention regions out
of an input image by performing the visual perception
algorithm described in Section 2. As a result, it represents
the ROIs of the input image in the unit of small-sized tile
called grid-tile. For example, the ROIs of a VGA (640�480
pixels) sized image can be built by a number of grid-tiles
whose size is 40�40 pixels. The SPU cores are employed
to perform a feature description algorithm such as SIFT for
the selected grid-tile area by the VPE. It exploits
dual-issued VLIW instructions whose length is 51-bit and
olled multi-core architecture for energy efficient object
16/j.image.2010.03.003
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8-way ALU datapaths for SIMD extended instructions in
order to accelerate kernel image processing tasks such as
Gaussian image filtering, gradient computation, and
histogram operation. More detailed information about
an SPU core is presented in [5]. The TM takes a role in
control of multiple SPU cores. It performs dynamic
scheduling of the ROI tile tasks from the VPE to SPU cores
and manages multiple threads of SPU cores based on their
centralized status table when they run whole application
program. In addition, it can control the overall execution
time of the SPU cores by its scheduling method. It can
assign the grid-tile tasks as fast as possible to idle cores
for real-time applications or can save the SPU core
resources to meet low power requirements.

3.2. Grid-tile based ROI processing model

Fig. 4 shows a grid-tile based ROI processing model of
the proposed architecture (Fig. 4b) with a conventional
column-wise processing model (Fig. 4a). Most of the
conventional multi-core architectures for image processing
applications adopt the column-wise processing model that
each processing core performs processing for the designated
column region of the input image. By doing this, the
workloads of overall image processing are well distributed
to multiple cores and data-level parallelism is easily ex-
ploited by them in this model. However, the conventional
column-wise processing cannot be applied to the proposed
attention controlled architecture because attended regions
will be different every time according to each input image.
By assigning specific regions to specific cores like conven-
tional model, the workloads of ROI tile tasks would not be
distributed among processing cores. To handle this, we
introduce a grid-tile based ROI processing model with a
dynamic scheduler that assigns the ROI grid-tiles to
different processing cores in a grid-tile unit every single
frame. With the status table of processing cores, it can
dynamically re-assign remaining grid-tile tasks to idle cores.
Therefore, this grid-tile based ROI processing model is
suitable in the proposed architecture to distribute the
workloads of overall image, i.e., the ROIs of the input
image, to multiple cores.
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3.3. Application mapping

There are two strategies in application mapping in
multi-core architecture. The first one is multiprocessor
programming. In this scenario, multiple cores perform a
one large process together while each core performs a
different kind of small thread as a part of the whole
process. For example, for the SIFT algorithm mapping
case, cores 0–3 are mapped for Gaussian scale space
generation, core 4 is for DoG computation, cores 5–7
are for key-point localizations, and so on. Therefore,
intermediate data communications should be carried in
this application mapping and task-level parallelism is
achieved because different cores perform different kinds
of tasks at the same time. However, this multiprocessor
programming requires different kinds of programming for
different multiple cores with program and data synchro-
nization issues in data communications. Typically,
multiprocessor programming demands much more time
and efforts than single processor programming and its
performance gain is limited due to the data dependency
among cores. In the proposed architecture, each SPU core
contains a 16-bit barrier register for program synchroni-
zation in multiprocessor programming. The TM in this
case should do complex partitioning of the ROI tasks,
configure each core’s program, and control threads of
them. The second strategy is to divide the whole process
by the region while each core runs the whole application
program. For example, core 0 performs SIFT for the area of
grid-tile 0 while core 1 performs it for the area of grid-
tile 1. In this scenario, multiple cores can achieve data and
thread-level parallelism. Data communications among
cores occurring in boundary condition are less than the
multiprocessor programming case. Table 1 summarizes
the two methods of application mapping in multi-core
architecture.

Since we can avoid hard programming efforts and
synchronization issues by adopting the second method,
we apply it to the SIFT mapping to the proposed
architecture. The SIFT kernel applicable for any tile size
is mapped to each SPU core and the TM schedules the ROI
grid-tile tasks to multiple SPU cores and manages the
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Table 1
Two methods in application mapping.
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threads. In the SIFT mapping to a single SPU core, a
streaming approach is used to reduce the size of local
embedded memory as shown in Fig. 5. A mapped task
fetches input stream into the local memory by the DMA, it
performs data calculations, and the output stream is
written back via the DMA. The DMA is effective to fetch
and store such partial streams with hiding data fetch
overhead because it runs in parallel with the SIMD
datapaths of SPU core. The pseudo code in the figure
shows an example of processing partial 2-dimensional
streams. For each partition, the win_init function loads the
initial window as large as w�h pixels and the inner loop
advances the window by w�v pixels per iteration.
The wait function waits until the DMA is idle. Software
pipelining technique is applied to the inner loop to hide
the latency of data fetch. The win_load function loads
the pixel data for the next iteration, and it has no flow
dependence to the kernel_func function. Therefore, the
kernel_func processes data fetched at the pervious loop
iteration without waiting for the completion of win_load.
The window processing creates a logical circular buffer in
the local memory, so that the overlapped region across
two consecutive loop iterations can be reused. The SPU’s
software development kit provides a runtime library
including the 2-dimensional window operations and a
compiler based on GNU C Compiler. While developing the
applications, most of the source code is compiled by the
Please cite this article as: J.-Y. Kim, et al., An attention contr
recognition, Signal Process. Image Commun. (2010), doi:10.10
compiler and small hotspot kernels are developed in
inline assembly.
3.4. Scheduling method

In the proposed architecture, the TM can control the
usage of multiple SPU cores based on the ROI results of
the VPE. It can slow down the overall process with
resource saving or speed it up for real-time performance
by exploiting different scheduling methods. Since the
number of ROI grid-tiles can be used as a workload
estimator of all SPU cores, the resource allocation
of SPU cores can be controlled based on it. Fig. 6 shows
the flowchart of the proposed workload-aware task
scheduling (WATS) that differentiates the number of
operating cores based on the measured workloads. This
scheduling method aims at intelligent resource allocation
and power saving by performing it.

At the beginning, the TM counts the number of ROI
grid-tiles from the VPE to measure the overall workload of
input image. It classifies the measured workload to 1 of W

workload levels to represent the amount of workloads of
current frame. The W workload levels are divided by W�1
threshold values that can be updated in frame basis. Then,
it determines the number of operating SPU cores and
corresponding power domains according to the selected
olled multi-core architecture for energy efficient object
16/j.image.2010.03.003
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workload level Wmea. Simply, we can determine the
number of operating cores out of N cores to be a linearly
proportional, Nx (Wmea/W). Power co-optimization is also
performed by gating off the power domains of unused
cores. The WATS only activates the appropriate amount of
cores and power domains, and saves the rest of them.
After waiting a hundred ms power transition periods of the
domains, the TM starts to assign the ROI grid-tile tasks to
the active SPU cores. In our implementation case, which
will be described later in detail in Section 5, we choose the
number of SPU cores and their power domains to 16
and 4, respectively. Since the WATS determines the
number of operating SPU cores in proportion to the
workload amount, the execution time of whole frame is
managed around a constant value. Unless all the ROI
grid-tile tasks are assigned to active SPU cores, the TM
aggressively assigns remaining tasks to idle cores based
on their status table. Completing all of the ROI grid-tile
tasks, the TM measures the overall execution time of
current frame for further information to update the
threshold values. The execution time can be shortened
Please cite this article as: J.-Y. Kim, et al., An attention contr
recognition, Signal Process. Image Commun. (2010), doi:10.10
or lengthened by decreasing and increasing the threshold
values, respectively. This WATS shows the execution time
of whole process and resource saving of multiple SPU
cores can be managed at the same time. A scheduling
method of the TM can be changed by suitably program-
ming it for the purpose of overall system.
3.5. Experimental results

To evaluate the performance of the proposed attention
controlled multi-core architecture, we perform experi-
ments on 100 sample images from real video frames with
a cycle accurate simulator in C++/System C. The size of
input image is the VGA (640�480) and the size of a grid-
tile can be configured from 24�24, 32�32, y to 72�72
pixels, by 8 pixels step both in width and height. In the
experiments, the VPE extracts the ROIs of the input image
in a grid-tile unit and the TM schedules them to N SPU
cores with or without any scheduling method. The
parameterized SIFT program is mapped to each SPU core
olled multi-core architecture for energy efficient object
16/j.image.2010.03.003
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and the N value is set to 16. The experiments cover 4
issues of the proposed architecture. First, the utilizations
of multiple SPU cores are evaluated. Second, the perfor-
mance of the grid-based ROI processing architecture is
analyzed according to the size of the grid-tile. Third,
execution time management, and resource usage of the
WATS will be covered. Last, the overall energy reduction
effect by the proposed attention controlled architecture
will be shown.

Fig. 7 shows the hardware utilizations of 16 SPU cores
when the TM schedules the ROI grid-tile tasks to all of the
16 SPU cores without any special scheduling method.
The size of grid-tile is set to 40�40 pixels. For 100 frame
images, the average activation time of each SPU core is
measured. With a number of ROI grid-tile tasks, the
SPU0
SPU1

SPU2
SPU3

SPU4
SPU5

SPU6
SPU

4

8

12

16

E
xe

cu
tio

n 
tim

e 
(m

s)

Fig. 7. Hardware utiliza

24 32 40 48

1

2

3

4

5

6

7

8

Size of grid-tile

Optimal point

Overall execution time

E
xe

cu
tio

n 
tim

e 
pe

r R
O

I*
 g

rid
-ti

le
 (m

s)

Fig. 8. Tile size vs. overa

Please cite this article as: J.-Y. Kim, et al., An attention contr
recognition, Signal Process. Image Commun. (2010), doi:10.10
average utilization of all SPU cores is calculated as 92%
while ranging from 87% to 99%. This result shows
attention controlled multiple processing cores are highly
utilized in the proposed architecture.

Fig. 8 shows the performance of the grid-based ROI
processing according to the size of a grid-tile. We measure
the average execution time per ROI grid-tile and the
average number of ROI grid-tiles for the 100 sample
images where the size of a grid-tile varies from 24�24 to
72�72 with a step of 8�8. As a result, the execution time
of an ROI grid-tile linearly increases with the size of grid-
tiles. Since the SPU core contains SIMD extended
1-dimensional vector processing, the overall execution
time is linear even though the processed area increases
quadratically. On the other hand, the number of ROI
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grid-tiles decreases quadratically according to the size of
grid-tile. By multiplying two factors, we can obtain overall
execution time. The resulting performance is not optimal
when the size of grid-tile is too small or too large, i.e.,
24�24 and 72�72, however, the differences are not very
large for the medium size cases from 32�32 to 64�64.
The optimal point is when the tile size is 32�32. The
cases of multiples of 16 such as 32�32, 48�48, and
64�64 show better performance due to their better row
data mapping to SPU core. Lastly, it is remarkable that
the experimental results can be affected by hardware
structure and software mapping on it. In our case, we used
an 8-way SIMD processor and streaming model in
software mapping as described in Section 3.3. Data
transaction style with external memory can be another
factor in determining the optimal size of the grid-tile.
Using cache or scratch pad, using DMA or not can affect
the performance. In our case, we used a scratch pad with a
DMA capable of 2-dimensional data access.

Fig. 9 shows the experimental results of the WATS
showing its execution time management. We measured
the execution times of the overall process of SPU cores
when the ROI grid-tiles are scheduled to 16 SPUs by the
WATS. The mean and variance value of the number of ROI
grid-tiles for 100 sample images are measured as 79.33
and 22.87, respectively, where the size of input image is
the VGA (640�480) and the size of a grid-tile is 40�40
pixels. As shown in the result graph, the WATS manages
the overall execution time around 16.4 ms with a small
variance of 2.62 under the large ROI workload variation. In
this situation, the average number of operating SPU cores
is measured as 13.16 and the rest SPU core resources can
be used for other purposes or saved for low power
consumption.

Fig. 10 shows the total energy reduction by the
proposed architecture. We measured the energy
consumption of conventional and attention controlled
multi-core architecture under the condition that the
hardware of multiple cores are the same as 16 SPU
Frame 

# 
of

 R
O

I*
 g

rid
-ti

le
s

0

40

80

120

160

Input video frames 
μ=79.33 / σ 

Execution time
16.4ms

Varianc
2.62

Fig. 9. Execution time ma

Please cite this article as: J.-Y. Kim, et al., An attention contr
recognition, Signal Process. Image Commun. (2010), doi:10.10
cores and the energy consumption of a controller unit is
ignored in both the cases. Therefore, energy overhead of
the proposed attention controlled architecture is energy
dissipation by the VPE for attention processing. As a
result, the attention controlled multi-core architecture
reduces the total energy consumption by 2.1 times by
reducing the energy consumption of energy hungry
multiple cores with investing a 0.87 mJ attention
processing.

4. Neuro-fuzzy visual perception implementation

In the proposed attention controlled architecture, the
ROIs of an input image are used as an important clue for
intelligent control of multiple cores to reduce the overall
energy consumption. In this section, we describe the
implementation of a special hardware named visual
perception engine (VPE) that extracts the ROIs out of the
input image prior to detailed object recognition. Since the
visual perception is an additional process to obtain energy
saving in object recognition processing, the implementa-
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tion cost of it in terms of energy dissipation should be
small enough.

For energy efficient design, the VPE employs an RISC
controller and 3 dedicated hardware blocks for the
detailed visual perception process as shown in Fig. 11: a
motion estimator (ME), a visual attention engine (VAE),
and an object detection engine (ODE). The ME is employed
to generate a motion vector map between two
consecutive frames using a conventional block matching
algorithm [12]. The VAE is employed to accelerate feature
map extraction and normalization to generate saliency
map. The ODE is proposed to perform final ROI
classification from selected seed points that determines
neighboring pixels can be joined to interest region of
object or not. The RISC controller takes a role in control of
the 3 dedicated hardware blocks and performing
software-oriented operations. A 24 KB memory is used
for storing original images and data communication
among the 3 special blocks by sharing intermediate
processing data. In the design of the VAE and ODE, bio-
inspired 2-dimentional cellular neural networks (CNNs)
and neuro-fuzzy classifier suitable for rapid feature
extraction and robust classification, respectively, are
employed.

4.1. Cellular neural networks based visual attention engine

Fig. 12 shows the block diagram of the VAE and its cell
organizations [9]. The VAE is composed of 40�40 cell
arrays and a linear array of 40 PEs. The cells perform
storage and inter-cellular communication functions while
the PEs are responsible for processing the cells data. Each
VAE cell consists of a 6T SRAM based 4�8-bit register
that stores intermediate data and result data of CNN
operation, and 8-bit 4-directional shift register that shifts
the register data to the adjacent cells. A shift operation on
Target algorithm
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dynamic
feature

Saliency map

static features

Motion

Region growing via pixel classification

Input Image

Multi-scale generation

Center surround difference

Normalization & combination

Seed selection (10seeds)

ROIs of image

Fig. 11. Block diagram of vis
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the entire chip requires only 1 cycle to complete. Based
on its fully connected 2-dimentional cellular structure
and fast data movement among neighbor cells, its regional
and collective processing accelerates the various feature
extractions that contains a lot of image filtering and
convolution operations.

4.2. Object detection engine: neuro-fuzzy classifier

Fig. 13 shows the block diagram of the ODE and its
transistor-level circuit implementations [11]. The ODE
consists of Gaussian fuzzy membership and single-layer
neural network, used for similarity measure between the
seed and the target pixel and for final decision making in
classification, respectively. An analog-digital mixed mode
approach is used to exploit both advantages of analog
and digital circuits. Firstly, data processing parts of the
ODE are designed by analog circuits to obtain area and
power reduction in non-linear Gaussian function and
synaptic multiplier implementation. After converting
8-bit intensity, saliency, and location digital values of
the target and seed pixel to analog signals, 3 analog
Gaussian function circuits measure the similarities
between the two pixels. Gaussian function is realized by
the combination of MOS differential pair and minimum
following circuit in current mode operation. The
differential pair circuit generates two symmetric
differential signals where each of them has exponential
non-linearity characteristics, and the minimum follower
circuit results Gaussian-like output by following the
minimum between the two signals. Current mode neural
synaptic multipliers are implemented by binary-weighted
current mirrors to merge the 3 similarities with their
weight values. A comparator circuit makes the final
decision result 0 or 1 through thresholding operation.
On the other hand, a learning part in order to update the
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weight values of neural network is implemented by
digital circuits for easy management of data storage.
With an unsupervised Hebbian learning that strengthens
the connection weight to firing cells [13] only a multiplier
and an adder are used for each weight value. As a
result, analog-digital mixed mode implementation
reduces the area and power consumption of the ODE
by 59% and 44%, respectively, compared with those of
digital-only implementations. With the 4 parallel
execution units, the ODE completes the ROI detection
for each region within 7 ms at 200 MHz operating
frequency.
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4.3. VPE evaluation

To evaluate the energy efficiency of the VPE, we
compare the energy consumption of it with the other
comparable processing unit when both of them run the
same visual perception algorithm. We compare the VPE to
an SPU core because its SIMD processing is also quite
suitable for visual perception algorithm. To consider area
factor, we compare the results of 2 SPU cores with the
VPE. As shown in Table 2, the VPE’s dedicated hardware
blocks execute target algorithm more than 3.5 times
faster than SPU core’s SIMD acceleration. As a result, the
olled multi-core architecture for energy efficient object
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Table 2
VPE evaluation.

Execution time Power dissipation Energy consumption Energy gain

2 SPU cores 36.9 ms 67.5 mW 2.49 mJ –

VPE 10.4 ms 83 mW 0.87 mJ 2.85�
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VPE completes the target visual perception algorithm
with 0.87 mJ energy dissipation and this is 2.85� more
energy efficient than 2 SPU cores.
5. System integration

The proposed attention controlled architecture is
implemented in a real-time object recognition processor
Please cite this article as: J.-Y. Kim, et al., An attention contr
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as shown in Fig. 14. Except the VPE, TM, and 16 SPU
cores, a decision processor (DP) is added for post data-
base matching task after key-point description by the 16
SPU cores. In the proposed processor, 3 recognition stages,
visual perception, feature description, and database
matching, operated by the VPE, 16 SPUs, and DP,
respectively, are executed in the pipeline for high-
recognition throughput. All 21 IP blocks including
2 external memory interfaces are fully interconnected
olled multi-core architecture for energy efficient object
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Fig. 14. System integration block diagram.
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through a network-on-chip (NoC). The 16 SPU cores are
divided into 4 SPU clusters where a cluster contains 4 SPU
cores and has a separate power domain. Further analysis
about the number of separate power domains and its
power reduction effect is given in [14]. For power gating
of each domain, external power gating is used. In the chip,
the TM manages 4 power domains of 4 SPU clusters by
requesting each of the external regulators to gate-off
corresponding domain.

Fig. 15 shows the chip micrograph of the proposed
processor fabricated in 0.13 mm 1-poly 8-metal CMOS
technology. Its area is 7�7 mm2 and contains 36.4 M
transistors including 3.7 M logic gates and 396 KB on chip
SRAM. The operating frequency is 200 MHz for IP blocks
and 400 MHz for NoC. Its peak performance amounts to
201.4 GOPS where 1 operation means 16-bit fixed-point
operation. The average power consumption is 496 mW at
the supply voltage of 1.2 V. Table 3 summarizes chip
features.

Table 4 shows performance comparisons with previous
object recognition processors [2–4,14]. While IMAP-CAR
has a target application of vehicle vision, other processors
share the same target application, SIFT based object
recognition. In commercial CELL-BE processor [15] and
multi-core object recognition processor [3], only SIFT
feature description is implemented without post database
matching process. On the other hand, full object
Please cite this article as: J.-Y. Kim, et al., An attention contr
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recognition is implemented in dual-mode object
recognition processor [4] and the proposed processor
with the database size of 5632 and 16,384, respectively.
olled multi-core architecture for energy efficient object
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Table 3
Chip summary.

Technology 0.13 mm 1P 8 M CMOS

Package 320 pin FPGA

Die size 7 mm�7 mm

Power supply 1.2V core, 2.5V I/O

Operating frequency 200 MHz IPs/400 MHz NoC

Transistor counts 36.4 M transistors

3.73 M gates/396 KB SRAM

Power consumption Peak: 695 mW/ Average: 496 mW

Peak performance VPE 54 GOPS

16 SPU cores 128 GOPS

DP 19.4 GOPS

Total 201.4 GOPS

Power efficiency 290 GOPS/W

Target application Real-time object recognition

Input screen VGA (640�480 pixels)

Frame rate 60 frame/s

Database size 16,384 vectors (50 objects)

Table 4
Performance comparisons.

IMAP-CAR [2] CELL-BE [15] CICC2007 [3] ISSCC2008 [4] This work

Process 130 nm 90 nm 180 nm 130 nm 130 nm

Chip size/

Transistor count

Not reported/

26.8 M TRs

235 mm2/241 M TRs 38.5 mm2/0.8 M gates, 34 KB 36 mm2/2M gates, 228 KB 49 mm2/36 M TRs

Power supply 1.2 V 0.9–1.3 V 1.8 V 1.2 V 1.2 V

Operating

frequency

100 MHz 3.2 GHz 200 MHz 200 MHz 200 MHz

Peak performance 100 GOPS 4200 GFLOPS 81.6 GOPS 125 GOPS 201.4 GOPS

Power

consumption

o2 W About 50 W 1.08 W (avg.) 0.6 W (avg.) 0.5 W (avg.)

Target application Vehicle area

detection

SIFT descriptor

generation

SIFT descriptor generation Object recognition

(attention based)

Object recognition

(attention based)

Hardware

architecture

SIMD Ring interconnected

multi-core

Multi-core w/shared channel

memories

Reconfigurable SIMD/

MIMD

Attention controlled
multi-core

Frame rate 32 fps 0.48 fps 16 fps 22 fps 60 fps
Database size N.A. N.A. N.A. 5632 16,384

Energy/frame 40 mJ 104 J 67.9 mJ 26.5 mJ 8.2 mJ
Screen resolution 256�240 UVGA (1600�1200) QVGA (320�240) QVGA (320�240) VGA (640�480)

Energy/pixel 651 nJ 54 mJ 884 nJ 345 nJ 26.7 nJ
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Since the attention controlled multi-core architecture
reduces the overall workload of object recognition and
manages multi-core resource efficiently, the proposed
processor achieves 60 frame/s frame rate for the VGA-
sized input video with 496 mW low power consumption.
As a result, the obtained 8.2 mJ energy dissipation per
frame is the lowest ever and 3.2� less than the state-of-
the-art object recognition processor.
6. Conclusions

In this article, an attention controlled multi-core
architecture is presented for energy efficient object
recognition. The VPE computes regions-of-interest (ROIs)
out of the input image and the TM controls the multiple
processing cores to perform local object recognition
processing for the selected area. The TM performs
dynamic scheduling of various ROI tasks from the VPE to
multiple cores in a unit of small-sized grid-tile. In this
Please cite this article as: J.-Y. Kim, et al., An attention contr
recognition, Signal Process. Image Commun. (2010), doi:10.10
architecture, the utilization of the multiple cores is
measured as 92% and the 32�32 pixel size is the best
for the grid-tile in terms of overall execution cycles. As a
result, the proposed architecture achieves 2.1� energy
reduction in multi-core object recognition system with
sacrificing small overhead for attention processing. Final-
ly, the proposed architecture is realized in 0.13 mm CMOS
technology and verifies 3.2� lower energy dissipation per
frame than the state-of-the-art object recognition processor.

Although this architecture is optimized for ROI based
selective processing, it is also suitable for general image
processing applications. With the tile based fine-grained
processing, task management by the TM can achieve high
utilization of multiple processing cores.
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